
1

Online Appendix B: The Code for Salary Equity Analysis
Regular salary equity studies can be a best practice among employers committed to salary equity

and fairly managed compensation. As discussed in an article forthcoming in Public Personnel

Management entitled “How to do a salary equity study – With an illustrative example from

higher education,” by Lori L. Taylor, Joanna N. Lahey, Molly I. Beck, and Jeffrey E. Froyd,

salary equity studies typically use regression techniques to model the relationship between a

measure of compensation, a demographic of interest (such as sex or race), and an array of other

possible explanatory factors, which are referred to as controls. Below, we present sample code

that can be used to conduct such analyses using two popular software packages.

The sample code provides instructions for a specification using panel data and random effects. It

can be adapted to conduct a salary analysis in a variety of statistical platforms. Comments and

advice are italicized to differentiate them from the actual statistical commands. We conducted

our analysis using Stata, which is a statistical package available for Windows, Mac, and

Linux/Unix computers (www.stata.com). However, we also provide analytical code to conduct

the analysis using SAS/Stat, which is a statistical package available in a variety of platforms

(www.sas.com).

In all cases, the data should be structured so there is one observation per person per year. Start

with an excel file structured as in Table B1. You may add as many other control variables as you

like, but don’t forget that you need to have many more employees than you have variables. The

file should include data on anyone who worked for your organization at any time during the

analysis period, even if they are no longer employed by your organization.

2

Table B1: An Illustration of the Data File Structure

Employee
ID

year unit position Monthly
salary

sex race experience education Year
hired

other
control
variable

QAD579 2017 accounting Clerk II 3000 M W 12 MA 2015 A

QAD579 2016 accounting Clerk II 2700 M W 11 MA 2015 A

QAD579 2015 accounting Clerk I 2000 M W 10 BA 2015 C

AMZ123 2017 accounting AA 2500 F H 7 BA 2012 B

AMZ123 2016 accounting AA 2400 F H 6 BA 2012 B

WDA669 2015 purchasing AA 1800 F W 0 BA 2015 B

3

STATA Code

*To start, put all your datasets and Stata files in the same folder on your computer. You will
also save your modified version of this file as a plain text file with the extension “.do” as in,
salary_study_2018_v1.do. Such files can be used in Stata by going to File, then choosing Do.

scalar modelyear=2017 /*the most recent year for which you have data*/

*This line imports an excel spreadsheet into a Stata dataset.

import excel "filename", sheet("Sheet1") firstrow allstring clear

*The import command reads all the variables in a strings (i.e. non-numeric variables) to insure
no information content is lost. This command tells Stata that the following variables are actually
numbers and should be treated as such. The names of your variables may differ.

destring monthlysalary experience yearhired year, replace

*If your data codes sex and race using letters, these commands will turn them into binary
variables that can be used in summary statistics and regression analysis. If your dataset codes
these variables as 1, 2, etc. numbers, you will still need to turn them into binary variables but
will not need the quotation marks. For example, replace the second line of code below to read:
replace male = 1 if sex ==1.

gen male=0
replace male=1 if sex=="M"
gen white=0
replace white=1 if race=="W"
gen black=0
replace black=1 if race=="B"
gen hispanic=0
replace hispanic=1 if race=="H"

*creating variables for years of service and log monthly salary. Replace variables using the
names in your dataset.

gen yrsofservice=year-yearhired
gen logmonthly=ln(monthlysalary)

*creating a numeric employee id.

egen id=group(Employee_ID)

4

*This command declares the data to be time series data with year as the unit of time and id as
the observation that will be repeated across time.

tsset id year

*This line is a shorthand way of not having to rewrite the controls in each specification. Replace
the variable names with those you will be using in all of the specifications in your study.

global controls "male white black hispanic experience yrsofservice"

*The xi command is a short-hand way of turning a categorical variable into a vector of dummy
variables. Here this is creating and using unit, position, other, education and year fixed effects.

xi i.unit i.position i.other i.education i.year

*xtreg is a method of regression using panel data. These commands provide the baseline
regression results describing what predicts salary.

xtreg logmonthly $controls _I*, re cluster(id)

*This portion of the code creates predictions for what each individual would be paid were they a
white non-Hispanic male. Only predictions for the most recent year are generated.

*first you need to capture the individual random effects and calculate the average random effect
by position

predict random_effect, u
keep if year==modelyear
egen mean_random_effect=mean(random_effect), by(position)

*then you need to recode the data so that everyone is a white, non-Hispanic male

replace male=1
replace white=1
replace black=0
replace hispanic=0

*Next predict wages and the standard error of the predicted wage for those hypothetically white
Hispanic males

predict pwage, xb
predict stderr, stdp
gen predicted_logsalary=pwage+mean_random_effect
gen predictedmonthlysal=exp(predicted_logsalary)

5

*This code prints the observed wages and predicted wags for the 10% of workers with the
largest gap between actual and predicted. If you are using a different cutoff, you would change
the 90 (i.e. the 90th percentile) to the cutoff of your choice. If you want output for every
employee, simply remove the phrase “if abs(zstat) >=a90”

gen zstat=(logm-predicted_logsalary)/stderr
egen a90=pctile(abs(zstat)), p(90)

list Employee monthly predictedmonthly if abs(zstat) >=a90 & abs(zstat) !=.

6

SAS Code

%let modelyear=2017; /*the most recent year for which you have data*/

/*This block of code imports an excel spreadsheet into a SAS dataset called “salfile” */

PROC IMPORT OUT= WORK.salfile
 DATAFILE= "filename"
 DBMS=EXCEL REPLACE;
 RANGE="Sheet1$";
 GETNAMES=YES;
 MIXED=NO;
 SCANTEXT=YES;
 USEDATE=YES;
 SCANTIME=YES;
RUN;

/*This block of code constructs indicator variables within salfile. If your data codes sex and race
using letters, these commands will turn them into binary variables that can be used in summary
statistics and regression analysis. If your dataset codes these variables as 1, 2, etc. numbers,
you will still need to turn them into binary variables but will not need the quotation marks. For
example replace the second line of code below to read: if sex=1 then male=1......*/

Data salfile; set salfile;
If sex="M" then male=1; else male=0;
If race="W" then white=1; else white=0;
If race="B" then black=1; else black=0;
If race="H" then hispanic=1; else hispanic=0;

/*creating variables for years of service and log monthly salary. Replace variables using the
names in your dataset*/

yrs_of_service=year-yearhired;
logmonthly=log(monthlysalary);

/*This line is a shorthand way of not having to rewrite the controls in each specification.
Replace the variable names with those you will be using in all of the specifications in your
study.*/

%let controls=%str(male white black hispanic experience yrs_of_service);

7

/*This block of code adds a duplicate observation for each person who appears in the data set in
the model year. The variable “predfile” takes on a value of one if the observation is a duplicate,
and zero otherwise.*/

data salfile; set salfile salfile(in=duplicate where=(year=&modelyear));
predfile=duplicate;

/*By manipulating the characteristics of these duplicate observations, one generates predicted
wages for a person with specific characteristics. This portion of the code creates predictions for
what each individual would be paid were they a white non-Hispanic male. Only predictions for
the most recent year are generated. To ensure that these manipulated observations are not
included in the regression estimation, the dependent variable (logmonthly) is set to missing.*/

if predfile=1 then do;
 logmonthly=.;
 male=1;
 white=1;
 black=0;
 hispanic=0;
 end;

/*proc mixed implements a method of maximum likelihood regression using panel data. These
commands provide the baseline regression results describing what predicts salary. This block of
code invokes the mixed procedure and applies it to the data in salfile. The variables in the class
statement are declared to be categorical; SAS will construct indicator variables for each of
them. This set of commands will generate two output datasets. The first, named “pfile” contains
the predicted values for each observation. The second, named “random_effects” contains the
estimated random effects for each employee.*/

proc mixed data=salfile method=ML; class unit position education other_control_variable1
Employee_ID year;
model logmonthly=unit position education other_control_variable1 &controls year/solution
outp=pfile;
random Employee_ID /solution;
ods output solutionr= random_effects; run;
run;

/*Next capture the predicted wages and the standard errors of the predicted wage for those
hypothetically white Hispanic males.*/

data predwagefile; set pfile(where=(predfile=1));

8

/*merge on the estimated random effects*/

proc sort; by Employee_ID;
data predwagefile; merge predwagefile(in=uu) random_effects(keep=Employee_ID Estimate);
by Employee_ID; if uu=1;

/*calculate the mean of the random effects, by position and merge them back onto
predwagefile*/

proc sort; by position;
proc means noprint; var Estimate; by position; output out=avgs mean=avgrandom;
data predwagefile; merge predwagefile avgs(keep=position avgrandom); by position;

/*generate predicted wages, replacing the individual random effects (named “Estimate”) with
the average random effects by position (named “avgrandom”)*/

predwage=pred-Estimate+ avgrandom;
predictedmonthlysal=exp(predwage);

/*This code prints the observed wages and predicted wags for the 10% of workers with the
largest gap between actual and predicted. If you are using a different cutoff, you would change
the 90 (i.e. the 90th percentile) to the cutoff of your choice. If you want output for every
employee, simply remove the phrase “where abs(zstat) >=a90”*/

zstat=(log(monthlysalary)-predwage)/StdErrPred;
abszstat=abs(zstat);
proc means noprint; by year; var abszstat; output out=pctl p90=a90;
data predwagefile; merge predwagefile pctl; by year;

proc print; var Employee_ID monthlysalary predictedmonthlysal; where abszstat >=a90; run;

