APPENDIX A: State-Level Public School Dropout Data, 2004-05 ${ }^{1}$

STATE ABBR (SCHOOL)	$\begin{gathered} \text { TOT } \\ \text { DROPOUT } \\ \text { RATE- } \\ \text { 7TH } \\ \text { GRADE } \end{gathered}$	TOT DROPOUT RATE- 8TH GRADE	$\begin{gathered} \text { TOT } \\ \text { DROPOUT } \\ \text { RATE- } \\ \text { 9TH } \\ \text { GRADE } \end{gathered}$	$\begin{gathered} \text { TOT } \\ \text { DROPOUT } \\ \text { RATE- } \\ \text { 10TH } \\ \text { GRADE } \end{gathered}$	$\begin{gathered} \text { TOT } \\ \text { DROPOUT } \\ \text { RATE- } \\ \text { 11TH } \\ \text { GRADE } \end{gathered}$	$\begin{gathered} \text { TOT } \\ \text { DROPOUT } \\ \text { RATE- } \\ \text { 12TH } \\ \text { GRADE } \end{gathered}$	тот DROPOUT RATE- 712TH GRD	тот DROPOUT RATE-912TH GRD	$\begin{gathered} \text { TOT DROP } \\ \text { RATE- } \\ \text { ASIAN/PAC- } \\ 9-12 \end{gathered}$	TOT DROP RATEBLK, NON-HISP- 9-12	$\begin{gathered} \text { TOT DROP } \\ \text { RATE- } \\ \text { HISPANIC- } \\ 9-12 \end{gathered}$	TOT DROP RATE- WHT, NON- HISP- 9-12	$\begin{gathered} \text { TOT } \\ \text { DROP } \\ \text { RATE- } \\ \text { MALE- } 9- \\ 12 \text { GD } \end{gathered}$	$\begin{gathered} \text { TOT } \\ \text { DROP } \\ \text { RATE- } \\ \text { FEMALE- } \\ \text { 9-12GD } \end{gathered}$
AK	2	2.1	6.7	7.6	8.6	10.3	6	8.2	7.5	12.7	11.2	6.3	8.7	7.4
AL			2.3	3.1	3.1	3	2.8	2.8	1.2	3.2	3.3	2.7	3.4	2.3
AR			2.4	4	5.3	6.3	4.3	4.3	3.2	5.8	6.4	4.5	5.8	4.1
AZ	1.4	1.7	4.1	5.5	6.4	9.5	4.7	6.2	2.2	7	9.5	3.8	6.9	5.5
CA	0.9	1.2	2.1	2.2	2.7	6.1	2.4	3.1	1.6	5.5	4	2	3.5	2.7
CO	1	1.5	6.1	7.2	8.2	10	5.5	7.8	4.9	11.1	15.2	5.2	8.6	6.8
CT				1.8	2.2	1.9	2	2	1.6	2.9	4	1.5	2.7	2
DC														
DE	0.2	0.5	7.2	5.2	4.5	3.5	3.5	5.3	2.5	6.6	10.4	4.3	6	4.6
FL	1.2	1.8	3.3	3.3	3.5	4.3	2.8	3.5	1.6	4.8	4.2	2.8	4	3.1
GA	0.7	1.1	5.6	5.9	5.8	4.9	3.9	5.6	2.6	6.1	8.4	5	6.7	4.5
HI	0.6	0.8	2.8	4.7	5.4	6.7	3.3	4.7	4.3	5.7	5.2	5.7	5.2	4.1
IA	0	0	1.2	1.7	2.3	3.6	1.4	2.2	1.8	6.2	6.3	1.8	2.3	2
ID	0.1	0.2	1.9	2.8	3.7	4	2.1	3	2.2	4.7	6.5	2.6	3.5	2.6
IL	0.4	0.6	4.3	4.3	4.5	4.9	3.1	4.5	2.3	9.1	8.1	2.3	5	3.9
IN	0.2	0.3	1.3	2.2	3.2	3.9	1.7	2.5	1.1	3.3	4.2	2.3	2.9	2.1
KS	0	0.1	1.2	2	2.6	2.8	1.4	2.1	1.4	3.7	3.7	1.8	2.4	1.8
KY	0.1	0.2	2.4	3.8	4	4.1	2.3	3.5	1.3	5.6	3.8	3.2	3.7	3.1

${ }^{1}$ National Center for Education Statistics, Common Core of Data (CCD), "State-Level Public School Dropout Data", 2004-05 v.1a

STATE ABBR (SCHOOL)	$\begin{gathered} \text { TOT } \\ \text { DROPOUT } \\ \text { RATE- } \\ \text { 7TH } \\ \text { GRADE } \end{gathered}$	$\begin{gathered} \text { TOT } \\ \text { DROPOUT } \\ \text { RATE- } \\ \text { 8TH } \\ \text { GRADE } \end{gathered}$	$\begin{gathered} \text { TOT } \\ \text { DROPOUT } \\ \text { RATE- } \\ \text { 9TH } \\ \text { GRADE } \end{gathered}$	$\begin{gathered} \text { TOT } \\ \text { DROPOUT } \\ \text { RATE- } \\ \text { 10TH } \\ \text { GRADE } \end{gathered}$	TOT DROPOUT RATE- 11TH GRADE	$\begin{gathered} \text { TOT } \\ \text { DROPOUT } \\ \text { RATE- } \\ \text { 12TH } \\ \text { GRADE } \end{gathered}$	тот DROPOUT RATE- 7 12TH GRD	тот DROPOUT RATE- 912TH GRD	$\begin{gathered} \text { TOT DROP } \\ \text { RATE- } \\ \text { ASIAN/PAC- } \\ 9-12 \end{gathered}$	TOT DROP RATEBLK, NON-HISP-9-12	TOT DROP RATE-HISPANIC-9-12	TOT DROP RATE- WHT, NON- HISP- 9-12	$\begin{gathered} \text { TOT } \\ \text { DROP } \\ \text { RATE- } \\ \text { MALE- 9- } \\ 12 \text { GD } \end{gathered}$	$\begin{gathered} \text { TOT } \\ \text { DROP } \\ \text { RATE- } \\ \text { FEMALE- } \\ \text { 9-12GD } \end{gathered}$
UT	1	0.6	1	2	3.1	9.1	2.7	3.7	4.8	7.4	8.7	3	3.9	3.6
VA			2.3	2.2	2.1	3.4	2.5	2.5	1.6	3.2	6.8	1.8	2.9	2.1
VT	0.1	0.2	1.4	2.8	3.2	3.2	1.8	2.6	1.3	3.5	2.7	2.6	2.9	2.3
WA			3.8	3.9	4.9	5.6	4.5	4.5	3.1	6.5	7.8	3.9	5	3.8
WI	0.4	0.3	1.5	1.1	1.6	5.4	1.7	2.4	2.5	7.9	5.7	1.5	2.8	2
WV	0.1	0.4	3.4	4.4	4.5	4.3	2.7	4.1	1.8	5.4	5.5	4	4.5	3.7
WY	0.2	0.3	2.7	4.4	5.6	6.6	3.2	4.8	1.8	8	9.3	4.2	5.3	4.2

APPENDIX B: Averaged Freshman Graduation Rate of Public High School Students, by State: School Year 2002-03

State or jurisdiction	Averaged freshman graduation rate	Regular diplomas, school year 200203	Estimated first-time 9th graders in 1999-2000 ${ }^{1}$	Grade 10 membership, school year 2000-01 ${ }^{1}$	Grade 9 membership, school year 1999-2000 ${ }^{1}$	Grade 8 membership, school year 1998-99 ${ }^{1}$
United States (51 states)	73.9	2,719,947	3,682,202	3,529,652	3,986,992	3,529,963
Alabama	64.7	36,741	56,749	51,991	61,150	57,105
Alaska	68.0	7,297	10,725	10,110	11,568	10,497
Arizona	75.9	49,986	65,842	63,966	68,917	64,644
Arkansas	76.6	27,555	35,971	35,068	36,772	36,073
California	74.1	341,097	460,481	461,030	488,999	431,414
Colorado	76.4	42,379	55,491	54,006	58,815	53,652
Connecticut	80.9	33,667	41,613	40,608	43,977	40,254
Delaware	73.0	6,817	9,334	8,887	10,150	8,964
District of Columbia	59.6	2,725	4,574	3,838	5,580	4,303
Florida	66.7	127,484	191,065	170,385	223,743	179,066
Georgia	60.8	66,890	110,062	99,934	125,388	104,863
Hawaii	71.3	10,013	14,046	13,154	15,637	13,346
Idaho	81.4	15,858	19,490	19,359	20,039	19,073
Illinois	75.9	117,507	154,816	150,781	164,858	148,810
Indiana	75.5	57,897	76,718	73,565	81,442	75,147
Iowa	85.3	34,860	40,871	40,951	42,394	39,269
Kansas	76.9	29,963	38,952	38,231	40,650	37,974
Kentucky	71.7	37,654	52,488	49,708	57,405	50,350
Louisiana	64.1	37,610	58,715	53,307	64,855	57,982
Maine	76.3	12,947	16,967	16,001	17,233	17,668
Maryland	79.2	51,864	65,468	62,843	70,854	62,708
Massachusetts	75.7	55,987	73,979	71,430	78,062	72,444
Michigan	74.0	100,301	135,558	132,342	143,740	130,592
Minnesota	84.8	59,432	70,062	71,064	71,222	67,899
Mississippi	62.7	23,810	37,971	34,755	40,654	38,504
Missouri	78.3	56,925	72,657	70,666	76,575	70,731
Montana	81.0	10,657	13,157	12,885	13,562	13,024
Nebraska	85.2	20,161	23,655	23,378	24,861	22,725
Nevada	72.3	16,378	22,644	20,040	24,672	23,220
New Hampshire	78.2	13,210	16,902	16,225	17,573	16,907
New Jersey	87.0	81,391	93,573	91,086	96,228	93,404
New York	60.9	143,818	236,030	229,516	266,971	211,602
North Carolina	70.1	69,696	99,491	91,449	111,495	95,528

	Averaged freshman graduation rate	Regular diplomas, school year 2002- 03	Estimated first-time 9th graders in $1999-2000^{1}$	Grade 10 membership, school year $2000-01^{1}$	Grade 9 membership, school year $1999-2000^{1}$	Grade 8 membership, school year $1998-99^{1}$
State or jurisdiction	76.0	36,694	48,288	46,163	50,523	48,178
Oklahoma	73.7	32,587	44,244	43,821	45,867	43,045
Oregon	81.7	119,933	146,725	143,159	155,929	141,086
Pennsylvania	77.7	9,318	12,000	11,525	12,832	11,642
Rhode Island	59.7	32,482	54,404	48,628	62,883	51,700
South Carolina	83.0	8,999	10,840	10,402	11,261	10,859
South Dakota	63.4	44,113	69,621	65,388	75,890	67,583
Tennessee	75.5	238,111	315,494	287,355	359,368	299,760
Texas	80.2	29,527	36,838	37,335	36,783	36,396
Utah	83.6	6,970	8,337	8,006	8,779	8,227
Vermont	80.6	72,943	90,504	86,731	96,959	87,822
Virginia	74.2	60,435	81,465	80,453	86,602	77,340
Washington	75.7	17,287	22,826	21,882	23,928	22,669
West Virginia	85.8	63,272	73,746	73,796	78,961	68,481
Wisconsin	73.9	5,845	7,911	7,726	8,063	7,944
Wyoming						

${ }^{1}$ Estimates of enrollment by grade include a prorated count of students reported as not being in a standard grade (students classified as ungraded in CCD data
files).
NOTE: The averaged freshman graduation rate provides an estimate of the percentage of high school students who graduate on time. The rate for 2002-03 is computed by dividing the number of regular diplomas issued in school year 200203 by the number of estimated first-time 9th graders in 1999-2000. The estimated number of first-time 9th graders in 19992000 is the mean of membership in grades 8, 9, and 10 in school years 1998-99, 1999-2000, and 2000-01, respectively. SOURCE: U.S. Department of Education, National Center for Education Statistics, Common Core of Data (CCD), "State Nonfiscal Survey of Public Elementary/Secondary Education," 1998-99, 1999-2000, 2000-01, 2002-03.

APPENDIX C - House District Level

Figures C.1, C.2, and C. 3 represent the lower bound dropout rates of the 150 house districts in Texas for 2000, 2004, and 2007. The different shades represent different dropout rate ranges. The higher the dropout rates of each district, the darker the color. Urban area house districts in Dallas, Tarrant, and Harris counties contained both the highest dropout rates as well as the lowest dropout rates.

It is difficult to interpret the house districts' dropout rates regionally because of the drastically different dropout rates located within the different regions. However a large portion of West Texas had a dropout rate greater than the house district average in 2007, while the majority of the Panhandle, excluding the Northwest corner, has a dropout rate lower than the average.

Firgure C.1: Lower Bound Grade 9-12 Dropout Rate House District Level Data for 2000

Firgure C.2: Lower Bound Grade 9-12 Dropout Rate House District Level Data for 2004

Figure C.3: Lower Bound Grade 9-12 Dropout Rate House District Level Data for 2007

It is important to remember that the Texas lower bound dropout rate trend starts high in 2000, decreases to its lowest in 2004, and then increasing through 2007. Figures C. 4 and C. 5 show the House district percentage changes in the lower bound dropout rate from 2000-2004 and 2004-2007, respectively. The decrease percentage change is shown in blue and the increase change is shown in red. From 2004 to 2007, most of the house districts showed an increase in their dropout rates. Similar trends are found for the upper bound dropout rates for these two periods.

Figure C.4: Percentage Point Change in the Lower Bound Grade 9-12 Dropout Rate House District Level Data for 2000-2004

Figure C.5: Percentage Point Change in the Lower Bound Grade 9-12 Dropout Rate House District Level Data for 2004-2007

APPENDIX D - Senate District Level

From the Senate level data we examined the change in dropout rates for three time periods: 2000-2007, 2000-2005, and finally 2000-2007. This comparison was conducted using dropout data and comparing it between two different years. For example, we compared the dropout rates for the school year beginning in the year 2000 and compared it with the dropout rate from 2007. Data from the 2000-2007 time period revealed that the differences in dropout rates indicated a steady decrease in the overall dropout rate for the state. ${ }^{1}$ The same conclusion was also drawn with respect to the 2000-2005 time period. ${ }^{2}$ The differences in the dropout rates when comparing data from 2005 to data from 2007 also suggested that there was a significant decrease in the dropout rates state wide ${ }^{3}$. Figures D. 1 and D. 3 are visual representations of the lower bound dropout rates for each Texas Senate district for the 2000 and 2007 school year, respectively. The maps for any single year are coded in green and the maps displaying the changes in years are coded as blue and red, with blue representing a decrease trend while red illustrates an increase. Also located on the legend of each map is a number in parenthesis; this number is the actual number of districts that fall within a given range.

Figure D.1: Lower Bound Grade 9-12 Dropout Rate Senate District Level Data for 2000

[^0]Figure D.2: Lower Bound Grade 9-12 Dropout Rate

Senate District Level Data for 2007

Figure D. 3: Lower Bound Grade 9-12 Dropout Rate Senate District Level Data for 2007

The results of an empirical data analysis indicated that the statewide dropout rates between 2005 and 2006^{4} and 2006 and 2007^{5} do render a statistically significant difference. This serves to further reinforce the findings reported earlier that the trend in dropout rates from 2004 to 2007 show a noticeable increase in dropouts across the state. Furthermore, the results of an empirical data analysis between 2000 and 2006 are in line with the results of the aforementioned 2000 to 2005 and 2000 to 2007 analysis ${ }^{6}$.

As discussed earlier, the Texas dropout rate reached its lowest point in 2004, creating a visual 'V' in the linear portrayal of the data due to policy changes. Figures D. 4 and D. 5 show the percentage changes in the lower bound dropout rate from 2000-2004 and 2004-2007. The darker the color is, the greater the change. The actual numbers of districts that fall into each range are also included and are located in parenthesis next to the range in the legend. However, unlike the previous figures, the Percentage Point Change maps code the change as red for an increase in percentage points (or an increase in the dropout rate for a given district) and blue for a percentage point decrease (or a decrease in the dropout rate for a given district). Thus, Figure D. 4 indicates that there was a decrease in the dropout rates across each senatorial district from 2000 to 2004, whereas figure D. 5 indicates an increase in rates from 2004 to 2007. These results are mirrored for the upper bound trends as well.

Figure D.4: Percentage Point Change in the Lower Bound Grade 9-12 Dropout Rate Senate District Level Data from 2000-2004

[^1]Figure D.5: Percentage Point Change in the Lower Bound Grade 9-12 Dropout Rate Senate District Level Data from 2004-2007

Figure D. 6 is the Box Plot for the percentage change in the lower bound dropout rate. The left most bar represents the minimum dropout rates for each year; the maximum rate is portrayed by the right most bar (except in the case of 2006, the dot is an outlier that serves as the minimum for this data). The width of each box is determined by the spread of the middle 50 percent. A dot on either side of the bars is an indication that a rate is an outlier.

The minimum and maximum rates in 2004 were 19.2 percent and 31.6 percent, respectively, while the minimum and maximum rates were 24.3 percent and 36.2 percent in 2007, respectively. The mean for 2004 was 25.5 percent, while the mean for 2007 was 30.8 percent. These increases in the minimums, maximums, and means of the data statistically display the increase of the dropout rate between 2004 and 2007, mirroring the trend noted in the previous section. Figure D. 5 also shows two Senate districts as outliers for 2007, indicating that these districts did not have the same rate of increase for dropout rates as other Senate districts experienced between 2004 and 2007.

Figure D.6: Box Plot of Percentage Point Change in the Lower Bound Grade 9-12 Dropout Rate Senate District Level Data for 2004-2007

APPENDIX E-GSP

Table E. 1 All Observations

	(1)	(2)	(3)	(4)
VARIABLES	Employed	Hourly Wage (log)	Total Hours	Welfare
Female	-0.0104***	-0.169***	-380.9***	1987***
	(0.000589)	(0.00259)	(2.714)	(66.55)
Age	0.00445***	0.0390***	102.4***	38.66***
	(0.000115)	(0.000512)	(0.627)	(9.903)
Age Squared	-4.17e-05***	-0.000349***	-1.144***	-0.432***
	(1.34e-06)	(6.00e-06)	(0.00730)	(0.0996)
Number of own children residing in home	0.0103***	0.0320***	30.02***	608.9***
	(0.000594)	(0.00222)	(2.898)	(54.80)
Number of own children squared	-0.00218***	-0.00662***	-10.14***	-5.091
	(0.000135)	(0.000568)	(0.738)	(11.00)
Number of own children under the Age of 5	0.000871	0.0329***	57.73***	1035***
	(0.000666)	(0.00233)	(3.134)	(57.22)
Hispanic	-0.00516**	0.0275***	-119.6***	-815.5***
	(0.00242)	(0.0105)	(13.89)	(237.9)
Whites of Hispanic Origin	0.0121	-0.0552	135.5**	2480
	(0.00916)	(0.0437)	(52.86)	(1760)
Non-Hispanic	0.0143	0.0402	116.0**	1642
	(0.0113)	(0.0426)	(51.19)	(1746)
Black	-0.0209	0.00553	-57.22	4281**
	(0.0141)	(0.0427)	(51.36)	(1747)
American Indian or Alaskan Native	-0.0115	0.0150	54.80	3712**
	(0.0135)	(0.0448)	(54.43)	(1778)
Chinese	0.00501	-0.0779*	-78.87	2093
	(0.0102)	(0.0446)	(54.54)	(1842)
Japanese	-0.00628	0.0211	111.4	-1691
	(0.0169)	(0.0546)	(70.35)	(2806)
Other Asian or Pacific Islander	0.00710	-0.0604	-49.52	2059
	(0.00902)	(0.0431)	(52.03)	(1763)
Other race, nec	0.00179*	-0.00647	14.64**	202.4*
	(0.00105)	(0.00439)	(5.846)	(105.0)
Two major Races	-0.000481	-0.0328	38.68	3435*
	(0.0107)	(0.0434)	(52.46)	(1759)
Three or more major Races	0.00462	-0.0216	76.83	4255**
	(0.0126)	(0.0547)	(69.72)	(1956)
Education Unknown	-0.0317***	0.154***	-79.90***	-1608***
	(0.00237)	(0.0111)	(11.92)	(217.7)
High School Diploma	0.0189***	0.101***	210.9***	-1715***
	(0.000650)	(0.00362)	(4.488)	(79.33)
Some College Hours	0.0289***	0.159***	249.0***	-2725***
	(0.000626)	(0.00377)	(4.534)	(93.00)
Associate's Degree	0.0297***	0.215***	283.8***	-3372***
	(0.000628)	(0.00535)	(6.633)	(178.6)
Bachelor's Degree	0.0370***	0.379***	317.3***	-4959***
	(0.000565)	(0.00455)	(5.062)	(158.6)
Master's Degree	0.0330***	0.516***	325.4***	-4831***
	(0.000604)	(0.00598)	(6.974)	(257.8)
Professional Degree	0.0320***	0.454***	491.9***	-5166***
	(0.000826)	(0.0123)	(10.72)	(475.6)
Doctorate Degree	0.0311***	0.628***	408.3***	-4787***

	(0.00120)	(0.0124)	(15.02)		(700.5)
Constant		$1.564^{* * *}$	$-304.3^{* * *}$		$-18450^{* * *}$
		(0.0458)	(52.72)		(1770)
Location Fixed Effects?	yes	yes	yes		yes
Occupation and Industry Fixed Effects?	no	yes	no		no
Observations	419115	289636	361884		
R-squared		0.402			

Integrated Public Use Microdata Series and authors' calculations
Standard errors in parentheses
*** $\mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05, * \mathrm{p}<0.1$

Table E. 2 Female

	(1)	(2)	(3)	(4)
VARIABLES	Employed	$\begin{gathered} \text { Hourly Wage } \\ (\log) \end{gathered}$	Total Hours	Welfare
Age	0.00552***	0.0358***	100.9***	-21.04*
	(0.000181)	(0.000733)	(0.947)	(10.80)
Age Squared	-5.24e-05***	-0.000334***	-1.131***	-0.00116
	(2.12e-06)	(8.67e-06)	(0.0112)	(0.109)
Number of own children residing in home	0.00432***	-0.0129***	-56.98***	755.8***
	(0.000918)	(0.00319)	(4.332)	(61.65)
Number of own children squared	-0.00156***	-0.00188**	-1.671	-38.90***
	(0.000210)	(0.000839)	(1.129)	(12.39)
Number of own children under the Age of 5	-0.00447***	$0.0548 * * *$	-23.66***	828.3***
	(0.000989)	(0.00345)	(4.866)	(62.65)
Hispanic	-0.00299	0.0423***	-99.28***	-774.2***
	(0.00366)	(0.0147)	(19.98)	(257.6)
Whites of Hispanic Origin	0.0153	-0.0796	142.1*	1377
	(0.0139)	(0.0634)	(82.97)	(1714)
Non-Hispanic	0.0222	-0.00562	87.50	582.2
	(0.0183)	(0.0618)	(80.77)	(1697)
Black	-0.00723	0.00743	34.72	3492**
	(0.0181)	(0.0620)	(80.97)	(1699)
American Indian or Alaskan Native	-0.00422	$1.70 \mathrm{e}-05$	68.23	2751
	(0.0185)	(0.0650)	(85.21)	(1737)
Chinese	0.00623	-0.0679	-27.47	311.8
	(0.0155)	(0.0647)	(85.32)	(1855)
Japanese	-0.0210	-0.0402	34.66	-1862
	(0.0299)	(0.0791)	(109.1)	(2641)
Other Asian or Pacific Islander	0.0164	-0.0593	27.24	680.8
	(0.0113)	(0.0626)	(81.96)	(1720)
Other race, nec	-0.00255	-0.00356	4.243	221.9*
	(0.00180)	(0.00645)	(8.971)	(116.7)
Two major Races	0.00108	-0.0634	19.79	2265
	(0.0163)	(0.0630)	(82.50)	(1713)
Three or more major Races	0.00945	-0.0555	9.871	3127
	(0.0179)	(0.0783)	(106.8)	(1957)
Education Unknown	-0.0331***	0.134***	-41.80**	-1586***
	(0.00374)	(0.0163)	(18.22)	(241.6)
High School Diploma	0.0234***	0.0800***	252.8***	-1685***
	(0.00101)	(0.00542)	(6.894)	(86.74)
Some College Hours	0.0357***	0.133***	298.5***	-2779***

	(0.000989)	(0.00558)	(6.881)	(102.5)	
Associate's Degree	$0.0340^{* * *}$	$0.195^{* * *}$	$353.4^{* * *}$	$-3658^{* * *}$	
	(0.000911)	(0.00765)	(9.667)	(205.0)	
Bachelor's Degree	$0.0443^{* * *}$	$0.363^{* * *}$	$362.6^{* * *}$	$-5294^{* * *}$	
	(0.000844)	(0.00669)	(7.683)	(192.2)	
Master's Degree	$0.0388^{* * *}$	$0.526^{* * *}$	$392.4^{* * *}$	$-5285^{* * *}$	
	(0.000840)	(0.00868)	(10.43)	(336.6)	
Professional Degree	$0.0328^{* * *}$	$0.373^{* * *}$	$534.9^{* * *}$	$-4352^{* * *}$	
	(0.00156)	(0.0180)	(18.57)	(541.0)	
Doctorate Degree	$0.0343^{* * *}$	$0.635^{* * *}$	$528.7^{* * *}$	$-4969^{* * *}$	
	(0.00216)	(0.0216)	(27.71)	(1077)	
Constant		$1.526^{* * *}$	$-608.1^{* * *}$	$-12442^{* * *}$	
	(0.0660)	(82.93)	(1720)		
Location Fixed Effects?	yes	yes	yes		yes
Occupation and Industry Fixed Effects?	no	yes	no		no
Observations	189991	135341	165178		298091
R-squared		0.358			

Integrated Public Use Microdata Series and authors' calculations

$$
\text { Standard errors in parentheses } \quad * * * \mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05,{ }^{*} \mathrm{p}<0.1
$$

Table E. 3 Male

	(1)	(2)	(3)	(4)	
VARIABLES	Employed	Hourly Wage (log)	Total Hours	Welfare	
Age	$0.00335^{* * *}$	$0.0434^{* * *}$	$101.2^{* * *}$	$234.7^{* * *}$	
	(0.000145)	(0.000716)	(0.832)	(23.18)	
Age Squared	$-3.07 \mathrm{e}-05^{* * *}$	$-0.000383^{* * *}$	$-1.134^{* * *}$	$-1.927^{* * *}$	
	$(1.68 \mathrm{e}-06)$	$(8.30 \mathrm{e}-06)$	(0.00960)	(0.230)	
Number of own children residing in home	$0.0156^{* * *}$	$0.0670^{* * *}$	$108.8^{* * *}$	27.14	
	(0.000775)	(0.00309)	(3.873)	(114.4)	
Number of own children squared	$-0.00271^{* * *}$	$-0.0107^{* * *}$	$-19.12^{* * *}$	$99.83^{* * *}$	
	(0.000174)	(0.000771)	(0.966)	(22.65)	
Number of own children under the Age of 5	$0.00542^{* * *}$	$0.0118^{* * *}$	$93.47^{* * *}$	$1492^{* * *}$	
	(0.000926)	(0.00317)	(4.070)	(128.2)	
Hispanic	$-0.00757^{* *}$	0.0120	$-140.3^{* * *}$	-714.0	
	(0.00320)	(0.0150)	(19.05)	(541.9)	
Whites of Hispanic Origin	0.00218	$-0.109^{* * *}$	-1.186		854.9
	(0.00302)	(0.0155)	(19.77)	(565.3)	
Black	$-0.0471^{* * *}$	$-0.0836^{* * *}$	$-288.2^{* * *}$	$1138^{* * *}$	
	(0.00217)	(0.00581)	(7.121)	(241.9)	
American Indian or Alaskan Native	$-0.0289^{* * *}$	$-0.0468^{* *}$	$-90.65^{* * *}$		$1701^{* *}$
	(0.00688)	(0.0199)	(25.20)	(751.5)	
Chinese	-0.00306	$-0.164^{* * *}$	$-260.1^{* * *}$		1985^{*}
	(0.00687)	(0.0191)	(25.77)	(1029)	
Japanese	0.00557	0.00660	27.22		-33329
	(0.0157)	(0.0470)	(63.42)	(0)	
Other Asian or Pacific Islander	$-0.00997^{* * *}$	$-0.131^{* * *}$	$-239.7^{* * *}$		$1246^{* *}$
	(0.00336)	(0.00987)	(12.92)	(501.4)	
Other race, nec	$0.00460^{* * *}$	-0.00935	$20.60^{* * *}$	165.4	
	(0.00123)	(0.00592)	(7.563)		(222.1)
Two major Races	$-0.0102^{* * *}$	$-0.0834^{* * *}$	$-82.63^{* * *}$	$2002^{* * *}$	
	(0.00359)	(0.0128)	(16.01)	(493.0)	

Three or more major Races	-0.00702	-0.0685	13.09	2873
	(0.0139)	(0.0487)	(63.61)	(1875)
Education Unknown	-0.0292***	0.158***	-101.8***	-1584***
	(0.00298)	(0.0150)	(15.56)	(461.6)
High School Diploma	0.0157***	0.112***	180.8***	-1707***
	(0.000829)	(0.00488)	(5.872)	(174.8)
Some College Hours	0.0233***	0.164***	206.9***	-2614***
	(0.000800)	(0.00515)	(6.005)	(200.8)
Associate's Degree	0.0260***	0.211***	230.5***	-2720***
	(0.000850)	(0.00749)	(9.070)	(355.3)
Bachelor's Degree	0.0303***	0.363***	278.8***	-4516***
	(0.000759)	(0.00625)	(6.703)	(295.4)
Master’s Degree	0.0272***	0.481***	264.3***	-4458***
	(0.000871)	(0.00826)	(9.309)	(446.4)
Professional Degree	0.0302***	0.489***	452.2***	-7036***
	(0.000905)	(0.0168)	(13.07)	(964.3)
Doctorate Degree	0.0279***	0.606***	346.6***	-5777***
	(0.00136)	(0.0155)	(17.81)	(1097)
Constant		1.530***	-167.6***	-25456***
		(0.0249)	(17.33)	(731.5)
Location Fixed Effects?	yes	yes	yes	yes
Occupation and Industry Fixed Effects?	no	yes	no	no
Observations	229124	154295	196706	277929
R-squared		0.414		

Integrated Public Use Microdata Series and authors' calculations
Standard errors in parentheses
*** $\mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05, * \mathrm{p}<0.1$

Table E. 4 Hispanic

	(1)	(2)	(3)	(4)	
VARIABLES	Employed	Hourly Wage (log)	Total Hours		Welfare
Female	$-0.0254^{* * *}$	$-0.142^{* * *}$	$-399.8^{* * *}$		$1714^{* * *}$
	(0.00164)	(0.00544)	(6.070)	(91.50)	
Age	$0.00602^{* * *}$	$0.0303^{* * *}$	$93.19^{* * *}$	13.60	
	(0.000357)	(0.00111)	(1.498)	(14.78)	
Age Squared	$-5.50 \mathrm{e}-05^{* * *}$	$-0.000266^{* * *}$	$-1.031^{* * *}$	-0.0520	
	$(4.36 \mathrm{e}-06)$	$(1.35 \mathrm{e}-05)$	(0.0182)	(0.151)	
Number of own children residing in home	$0.0101^{* * *}$	$0.0266^{* * *}$	$56.36^{* * *}$	$611.6^{* * *}$	
	(0.00151)	(0.00413)	(5.921)	(73.90)	
Number of own children squared	$-0.00214^{* * *}$	$-0.00450^{* * *}$	$-13.80^{* * *}$	-7.929	
	(0.000309)	(0.000907)	(1.292)	(13.49)	
Number of own children under the Age of 5	-0.000581	$0.0190^{* * *}$	$65.20^{* * *}$		$854.7^{* * *}$
	(0.00155)	(0.00412)	(6.015)	(73.08)	
Education Unknown	-0.00780^{*}	$0.126^{* * *}$	$-117.5^{* * *}$		$-942.4^{* * *}$
	(0.00441)	(0.0170)	(20.67)	(272.7)	
High School Diploma	$0.0264^{* * *}$	$0.112^{* * *}$	$214.4^{* * *}$		$-1157^{* * *}$
	(0.00160)	(0.00575)	(7.687)	(109.9)	
Some College Hours	$0.0430^{* * *}$	$0.168^{* * *}$	$277.0^{* * *}$	$-2162^{* * *}$	
	(0.00151)	(0.00661)	(8.470)	(145.1)	
Associate's Degree	$0.0444^{* * *}$	$0.233^{* * *}$	$316.9^{* * *}$		$-2431^{* * *}$
	(0.00212)	(0.0114)	(15.70)	(308.7)	

Bachelor's Degree	$0.0539^{* * *}$	$0.399^{* * *}$	$394.1^{* * *}$		$-4263^{* * *}$
	(0.00152)	(0.0105)	(12.36)	(340.6)	
Master’s Degree	$0.0506^{* * *}$	$0.628^{* * *}$	$377.4^{* * *}$	$-4636^{* * *}$	
	(0.00247)	(0.0167)	(22.27)	(693.5)	
Professional Degree	$0.0370^{* * *}$	$0.249^{* * *}$	$363.8^{* * *}$	$-4228^{* * *}$	
	(0.00481)	(0.0268)	(30.93)	(863.7)	
Doctorate Degree	$0.0459^{* * *}$	$0.679^{* * *}$	$424.7^{* * *}$	$-4120^{* *}$	
	(0.00845)	(0.0461)	(63.95)	(2056)	
Constant		$1.645^{* * *}$	$-145.7^{* * *}$	$-15039^{* * *}$	
		(0.0339)	(28.47)	(415.6)	
Location Fixed Effects?	yes	yes	yes		
Occupation and Industry Fixed Effects?	no	yes	no		no
Observations	97044	67604	84163		142931
R-squared		0.302			

Integrated Public Use Microdata Series and authors' calculations
Standard errors in parentheses
*** $\mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05,{ }^{*} \mathrm{p}<0.1$

Table E. 5 Non-Hispanic

	(1)	(2)	(3)	(4)
VARIABLES	Employed	Hourly Wage (log)	Total Hours	Welfare
Female	-0.00627***	-0.188***	-406.5***	1778***
	(0.000629)	(0.00326)	(3.275)	(123.4)
Age	0.00334***	0.0441***	104.8***	52.23***
	(0.000115)	(0.000632)	(0.744)	(18.39)
Age Squared	-3.18e-05***	-0.000398***	-1.176***	-0.709***
	(1.31e-06)	(7.28e-06)	(0.00851)	(0.183)
Number of own children residing in home	0.00958***	0.0360***	6.921*	534.3***
	(0.000723)	(0.00304)	(3.832)	(121.8)
Number of own children squared	-0.00204***	-0.00685***	-6.347***	-20.05
	(0.000194)	(0.000874)	(1.100)	(29.89)
Number of own children under the Age of 5	0.00241***	0.0407***	56.78***	1386***
	(0.000832)	(0.00313)	(4.074)	(123.6)
Education Unknown	-0.0479***	0.173***	-88.54***	-2561***
	(0.00374)	(0.0168)	(17.13)	(495.6)
High School Diploma	0.0140***	0.0702***	189.0***	-2569***
	(0.000794)	(0.00556)	(6.700)	(159.2)
Some College Hours	0.0205***	0.128***	204.6***	-3702***
	(0.000769)	(0.00558)	(6.602)	(176.8)
Associate's Degree	0.0213***	0.182***	233.9***	-4308***
	(0.000670)	(0.00723)	(8.637)	(306.6)
Bachelor's Degree	0.0277***	0.349***	267.6***	-6247***
	(0.000666)	(0.00625)	(6.925)	(262.3)
Master's Degree	0.0239***	0.474***	284.4***	-5932***
	(0.000615)	(0.00766)	(8.687)	(394.6)
Professional Degree	0.0242***	0.489***	450.7***	-6481***
	(0.000703)	(0.0153)	(12.55)	(750.2)
Doctorate Degree	0.0215***	0.600***	373.9***	-6866***
	(0.00116)	(0.0147)	(16.99)	(1179)
Constant		1.566***	-164.5***	-19308***
		(0.0224)	(15.93)	(559.3)
Location Fixed Effects?	yes	yes	yes	yes
Occupation and Industry Fixed Effects?	no	yes	no	no
Observations	261239	182384	226944	350474
R-squared		0.413		

Integrated Public Use Microdata Series and authors' calculations
Standard errors in parentheses
*** $\mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05,{ }^{*} \mathrm{p}<0.1$

Table E. 6 Black

	(1)	(2)	(3)	(4)
VARIABLES	Employed	Hourly Wage (log)	Total Hours	Welfare
Female	-0.00142	-0.0883***	-205.4***	3290***
	(0.00264)	(0.00894)	(9.644)	(181.7)
Age	0.00771***	0.0316***	100.7***	96.31***
	(0.000567)	(0.00187)	(2.285)	(23.03)
Age Squared	-5.98e-05***	-0.000274***	-1.119***	-1.178***
	(6.94e-06)	(2.24e-05)	(0.0274)	(0.239)
Number of own children residing in home	0.0222***	0.0232***	108.5***	725.6***
	(0.00266)	(0.00773)	(10.08)	(120.1)
Number of own children squared	-0.00499***	-0.00560***	-26.16***	-22.52
	(0.000608)	(0.00198)	(2.544)	(24.28)
Number of own children under the Age of 5	-0.00130	0.0190**	40.58***	1175***
	(0.00296)	(0.00843)	(11.14)	(129.9)
Education Unknown	-0.0284***	0.113***	-1.424	-1885***
	(0.00817)	(0.0377)	(37.46)	(474.6)
High School Diploma	0.0401***	0.0736***	291.4***	-1651***
	(0.00301)	(0.0129)	(15.64)	(172.7)
Some College Hours	0.0640***	0.143***	429.1***	-2851***
	(0.00287)	(0.0133)	(15.75)	(202.2)
Associate's Degree	0.0599***	0.190***	501.2***	-4187***
	(0.00264)	(0.0182)	(22.76)	(418.5)
Bachelor's Degree	0.0740***	0.349***	553.8***	-5135***
	(0.00221)	(0.0168)	(18.87)	(394.1)
Master's Degree	0.0690***	0.488***	552.1***	-6378***
	(0.00236)	(0.0234)	(27.70)	(832.3)
Professional Degree	0.0670***	0.417***	744.1***	-6261***
	(0.00340)	(0.0539)	(53.17)	(1779)
Doctorate Degree		0.576***	553.5***	-30576
		(0.0631)	(82.96)	(0)
Constant		1.675***	-617.9***	-14107***
		(0.0547)	(45.23)	(629.0)
Location Fixed Effects?	yes	yes	yes	yes
Occupation and Industry Fixed Effects?	no	yes	no	no
Observations	39395	24266	32260	52895
R-squared		0.297		

Integrated Public Use Microdata Series and authors' calculations
Standard errors in parentheses
*** $\mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05,{ }^{*} \mathrm{p}<0.1$

Table E. 7 All Others

	(1)	(2)	(3)		(4)
VARIABLES	Employed	Hourly Wage (log)	Total Hours		Welfare
Female	$-0.0135^{* * *}$	$-0.122^{* * *}$	$-319.3^{* * *}$		$1646^{* * *}$
	(0.00289)	(0.0112)	(13.23)	(265.4)	
Age	$0.00455^{* * *}$	$0.0340^{* * *}$	$114.8^{* * *}$	-67.69^{*}	
	(0.000654)	(0.00268)	(3.508)	(39.77)	
Age Squared	$-4.55 \mathrm{e}-05^{* * *}$	$-0.000320^{* * *}$	$-1.266^{* * *}$		$1.073^{* * *}$

	(7.93e-06)	(3.23e-05)	(0.0423)	(0.399)
Number of own children residing in home	0.0120***	0.0235**	20.13	276.1
	(0.00278)	(0.0103)	(13.72)	(215.3)
Number of own children squared	-0.00244***	-0.00671***	-5.753*	77.82*
	(0.000561)	(0.00248)	(3.199)	(40.76)
Number of own children under the Age of 5	0.00224	0.0430***	22.08	671.0***
	(0.00330)	(0.0107)	(14.71)	(240.9)
Hispanic	-0.00570	0.00465	-90.41***	-743.1**
	(0.00403)	(0.0142)	(19.55)	(327.9)
Whites of Hispanic Origin		0		
		(0)		
Black		0		
		(0)		
American Indian or Alaskan Native	-0.0102	0.0210	13.01	3452**
	(0.0148)	(0.0481)	(59.76)	(1666)
Chinese	0.0124	-0.0201	-94.20	1170
	(0.0111)	(0.0482)	(60.23)	(1732)
Japanese		0.0860	94.54	-2137
		(0.0585)	(77.27)	(2641)
Other Asian or Pacific Islander	0.0135	-0.0184	-77.35	1621
	(0.0120)	(0.0462)	(57.08)	(1646)
Other race, nec	0.00517	0		
	(0.0157)	(0)		
Two major Races	0.000867	-0.0227	-1.760	3103*
	(0.0126)	(0.0465)	(57.57)	(1647)
Three or more major Races	0.00594	-0.00832	55.67	3862**
	(0.0148)	(0.0587)	(76.51)	(1839)
Education Unknown	-0.0300***	0.123***	48.85	-1568*
	(0.0108)	(0.0441)	(53.75)	(822.2)
High School Diploma	0.0231***	0.0655***	171.5***	-1453***
	(0.00316)	(0.0169)	(22.36)	(345.3)
Some College Hours	0.0270***	0.113***	175.7***	-1501***
	(0.00309)	(0.0174)	(21.88)	(350.9)
Associate's Degree	0.0336***	0.168***	200.4***	-2739***
	(0.00327)	(0.0236)	(30.85)	(666.7)
Bachelor's Degree	0.0352***	0.261***	216.0***	-4519***
	(0.00313)	(0.0198)	(23.06)	(608.6)
Master’s Degree	0.0347***	0.412***	193.7***	-3044***
	(0.00330)	(0.0245)	(28.56)	(740.2)
Professional Degree	0.0378***	0.380***	618.3***	-4466***
	(0.00371)	(0.0461)	(42.80)	(1485)
Doctorate Degree	0.0417***	0.527***	324.1***	-2081*
	(0.00336)	(0.0379)	(46.22)	(1225)
Constant		1.642***	-510.3***	-15703***
		(0.0869)	(87.72)	(1970)
Location Fixed Effects?	yes	yes	yes	yes
Occupation and Industry Fixed Effects?	no	yes	no	no
Observations	21288	15382	18517	29720
R-squared		0.394		

Integrated Public Use Microdata Series and authors' calculations
Standard errors in parentheses
*** $\mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05, * \mathrm{p}<0.1$

Table E. 8 Metropolitan

	(1)	(2)	(3)	(4)
VARIABLES	Employed	Hourly Wage (log)	Total Hours	Welfare
Female	-0.0107***	-0.164***	-355.7***	1967***
	(0.000676)	(0.00287)	(3.053)	(80.56)
Age	0.00454***	0.0407***	102.9***	43.56***
	(0.000134)	(0.000590)	(0.723)	(12.24)
Age Squared	-4.38e-05***	-0.000367***	-1.150***	-0.436***
	(1.57e-06)	(6.93e-06)	(0.00849)	(0.124)
Number of own children residing in home	0.00980***	0.0346***	21.39***	609.0***
	(0.000687)	(0.00254)	(3.282)	(65.68)
Number of own children squared	-0.00211***	-0.00734***	-8.623***	-2.952
	(0.000156)	(0.000652)	(0.836)	(13.01)
Number of own children under the Age of 5	0.00132*	0.0353***	57.88***	1027***
	(0.000768)	(0.00265)	(3.510)	(68.06)
Hispanic	-0.00635**	0.0318***	-117.0***	-641.3**
	(0.00268)	(0.0114)	(14.82)	(272.3)
Whites of Hispanic Origin	0.00128	-0.105***	19.01	589.9**
	(0.00264)	(0.0119)	(15.50)	(290.5)
Black	-0.0383***	-0.0381***	-160.9***	2727***
	(0.00156)	(0.00415)	(5.242)	(113.5)
American Indian or Alaskan Native	-0.0269***	-0.0226	-52.13**	1991***
	(0.00604)	(0.0165)	(21.32)	(427.2)
Chinese	-0.00824	-0.123***	-198.6***	606.5
	(0.00562)	(0.0138)	(19.00)	(603.6)
Japanese	-0.0201	-0.0116	-9.940	-3103
	(0.0159)	(0.0356)	(49.07)	(2255)
Other Asian or Pacific Islander	-0.00605**	-0.103***	-163.0***	467.8*
	(0.00253)	(0.00734)	(9.783)	(266.2)
Other race, nec	0.00151	-0.00673	13.67**	204.3*
	(0.00118)	(0.00485)	(6.387)	(123.8)
Two major Races	-0.0148***	-0.0815***	-80.68***	1580***
	(0.00323)	(0.00979)	(12.73)	(271.5)
Three or more major Races	-0.0118	-0.0793**	-10.39	2194**
	(0.0127)	(0.0370)	(50.57)	(1048)
Education Unknown	-0.0336***	0.154***	-80.62***	-1687***
	(0.00276)	(0.0125)	(13.50)	(262.5)
High School Diploma	0.0187***	0.104***	211.5***	-1729***
	(0.000747)	(0.00424)	(5.209)	(97.95)
Some College Hours	0.0293***	0.165***	251.7***	-2773***
	(0.000722)	(0.00435)	(5.167)	(111.9)
Associate's Degree	0.0294***	0.221***	283.2***	-3386***
	(0.000723)	(0.00607)	(7.463)	(209.0)
Bachelor's Degree	0.0377***	0.384***	322.1***	-4934***
	(0.000661)	(0.00513)	(5.656)	(181.4)
Master’s Degree	0.0331***	0.518***	336.0***	-4961***
	(0.000680)	(0.00662)	(7.618)	(295.9)
Professional Degree	0.0326***	0.471***	510.2***	-5405***
	(0.000870)	(0.0134)	(11.41)	(544.0)
Doctorate Degree	0.0312***	0.628***	417.0***	-5321***
	(0.00127)	(0.0133)	(15.77)	(828.3)
Constant		1.568***	-210.2***	-17187***
		(0.0192)	(14.77)	(357.0)
Location Fixed Effects?	yes	yes	yes	yes
Occupation and Industry Fixed Effects?	no	yes	no	no
Observations	318840	226729	276890	428158
R-squared		0.413		

Standard errors in parentheses
*** $\mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05,{ }^{*} \mathrm{p}<0.1$

Table E. 9 Rural

	(1)	(2)	(3)	(4)
VARIABLES	Employed	Hourly Wage (log)	Total Hours	Welfare
Female	-0.00936***	-0.186***	-461.8***	2028***
	(0.00120)	(0.00601)	(5.877)	(118.1)
Age	0.00434***	0.0329***	101.4***	23.03
	(0.000223)	(0.00104)	(1.273)	(16.91)
Age Squared	-3.74e-05***	-0.000288***	-1.131***	-0.364**
	(2.57e-06)	(1.20e-05)	(0.0145)	(0.167)
Number of own children residing in home	0.0123***	0.0195***	57.07***	569.4***
	(0.00118)	(0.00459)	(6.184)	(100.3)
Number of own children squared	-0.00245***	-0.00357***	-14.95***	-3.733
	(0.000268)	(0.00116)	(1.570)	(20.82)
Number of own children under the Age of 5	-0.000619	0.0211***	60.05***	1077***
	(0.00133)	(0.00497)	(6.914)	(106.5)
Hispanic	-0.000209	0.0126	-135.7***	-1364***
	(0.00561)	(0.0285)	(37.73)	(502.6)
Whites of Hispanic Origin	-0.00857	-0.0494*	39.27	1606***
	(0.00649)	(0.0292)	(38.78)	(521.4)
Black	-0.0577***	-0.0209**	-251.5***	2312***
	(0.00416)	(0.0107)	(13.75)	(197.5)
American Indian or Alaskan Native	-0.0422***	-0.0351	-84.77**	2205***
	(0.0115)	(0.0281)	(38.68)	(572.4)
Chinese	-0.0150	-0.0550	-112.0	-28248
	(0.0312)	(0.0773)	(117.7)	(0)
Japanese	-0.0574	-0.140	97.41	-27125
	(0.0675)	(0.126)	(205.4)	(0)
Other Asian or Pacific Islander	-0.00266	-0.0171	-181.2***	-486.3
	(0.00986)	(0.0346)	(47.65)	(1005)
Other race, nec	0.00187	-0.00422	12.79	185.7
	(0.00225)	(0.00999)	(13.65)	(197.7)
Two major Races	-0.0231***	-0.0274	-50.12*	2379***
	(0.00744)	(0.0225)	(30.42)	(410.9)
Three or more major Races	0.00321	0.0583	-187.9	4047**
	(0.0249)	(0.0953)	(128.9)	(1693)
Education Unknown	-0.0247***	0.149***	-78.08***	-1455***
	(0.00457)	(0.0235)	(25.24)	(390.3)
High School Diploma	0.0199***	0.0900***	206.6***	-1699***
	(0.00132)	(0.00695)	(8.899)	(134.8)
Some College Hours	0.0273***	0.133***	240.4***	-2633***
	(0.00126)	(0.00755)	(9.461)	(167.7)
Associate's Degree	0.0307***	0.178***	289.5***	-3394***
	(0.00125)	(0.0114)	(14.42)	(348.1)
Bachelor's Degree	0.0351***	0.332***	300.1***	-5215***
	(0.00110)	(0.0103)	(11.51)	(342.6)
Master's Degree	0.0335***	0.481***	277.8***	-4514***
	(0.00130)	(0.0147)	(17.54)	(540.2)
Professional Degree	0.0291***	0.336***	394.3***	-4380***

	(0.00259)	(0.0312)	(30.68)	(1009)
Doctorate Degree	$0.0319^{* * *}$	$0.639^{* * *}$	$377.7^{* * *}$	$-2949^{* *}$
	(0.00320)	(0.0363)	(46.70)	(1344)
Constant		$1.581^{* * *}$	$-252.1^{* * *}$	$-12964^{* * *}$
		(0.0412)	(34.67)	(563.6)
Location Fixed Effects?	yes	yes	yes	yes
Occupation and Industry Fixed Effects?	no	yes	no	no
Observations	100275	62907	84994	147862
R-squared		0.328		

Integrated Public Use Microdata Series and authors' calculations
Standard errors in parentheses
*** $\mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05$, * $\mathrm{p}<0.1$

We split the ACS results into two groups to obtain a more precise snapshot of trends over the years. Some changes had been made to the ACS data between the years 2004 and 2005, so it was simpler to analyze by grouping the years with matching variables.

Table E. 10 ACS Data 2001-2004

	(1)	(2)	(3)	(4)
VARIABLES	Employed	Hourly Wage (log)	Total Hours	Welfare
Female	-0.0106***	-0.178***	-372.1***	2053***
	(0.000593)	(0.00217)	(2.400)	(55.03)
Age	0.00517***	0.0345***	96.52***	19.81**
	(0.000112)	(0.000382)	(0.525)	(7.839)
Age Squared	-4.90e-05***	-0.000295***	-1.065***	-0.245***
	(1.30e-06)	(4.38e-06)	(0.00606)	(0.0779)
Number of own children residing in home	0.0125***	0.0359***	44.42***	585.8***
	(0.000599)	(0.00180)	(2.535)	(45.82)
Number of own children squared	-0.00257***	-0.00656***	-12.06***	-13.06
	(0.000136)	(0.000450)	(0.640)	(9.388)
Number of own children under the Age of 5	0.00182***	0.0335***	59.04***	978.1***
	(0.000681)	(0.00196)	(2.800)	(48.88)
Hispanic	-0.00360	0.0142	-73.67***	-1221***
	(0.00294)	(0.00950)	(13.70)	(244.3)
Whites of Hispanic Origin	-0.00721**	-0.0975***	-36.86***	1695***
	(0.00314)	(0.00979)	(14.11)	(252.1)
Black	-0.0504***	-0.0330***	-191.2***	2650***
	(0.00148)	(0.00298)	(4.188)	(77.94)
American Indian or Alaskan Native	-0.0355***	-0.0218*	-86.12***	2218***
	(0.00551)	(0.0117)	(16.56)	(293.0)
Chinese	-0.0150**	-0.118***	-200.6***	151.4
	(0.00596)	(0.0121)	(17.32)	(525.2)
Japanese	-0.0204	-0.0155	-37.25	-934.8
	(0.0156)	(0.0301)	(43.94)	(1255)
Other Asian or Pacific Islander	-0.0129***	-0.0941***	-163.7***	383.3*
	(0.00265)	(0.00612)	(8.641)	(215.9)
Other race, nec	0.00241**	-0.000368	19.65***	-3.793
	(0.00102)	(0.00343)	(4.950)	(86.57)
Two major Races	-0.0198***	-0.0667***	-98.49***	1988***
	(0.00327)	(0.00772)	(10.88)	(204.7)
Three or more major Races	-0.0111	-0.0489*	-131.8***	2773***
	(0.0116)	(0.0289)	(41.46)	(734.8)
High School Diploma	0.0205***	0.0828***	216.9***	-1540***
	(0.000651)	(0.00275)	(3.773)	(63.97)
Some College Hours	0.0295***	0.142***	253.6***	-2704***
	(0.000634)	(0.00293)	(3.854)	(77.36)
Associate's Degree	0.0329***	0.189***	299.4***	-3291***
	(0.000661)	(0.00439)	(5.847)	(151.3)
Bachelor's Degree	0.0410***	0.373***	332.4***	-4605***
	(0.000572)	(0.00369)	(4.394)	(128.3)
Master’s Degree	0.0369***	0.480***	338.5***	-4564***
	(0.000641)	(0.00505)	(6.215)	(214.6)
Professional Degree	0.0362***	0.425***	481.8***	-4543***
	(0.000880)	(0.00999)	(9.621)	(364.0)
Doctorate Degree	0.0347***	0.568***	410.1***	-3872***

	(0.00131)	(0.0107)	(13.54)	(506.9)	
Constant		$1.462^{* * *}$	$-385.5^{* * *}$		$-15947^{* * *}$
		(0.0182)	(17.78)	(425.0)	
Location Fixed Effects?	yes	yes	yes		yes
Occupation and Industry Fixed Effects?	no	yes	no		no
Observations	475324	470032	475324	745320	
R-squared		0.352			

Integrated Public Use Microdata Series and authors' calculations
Standard errors in parentheses
*** $\mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05, * \mathrm{p}<0.1$

Table E. 11 ACS Data 2005-2007

	(1)	(2)	(3)	(4)
VARIABLES	Employed	Hourly Wage (log)	Total Hourse	Welfare
Female	-0.0122***	-0.164***	-371.9***	2245***
	(0.000768)	(0.00274)	(2.894)	(103.2)
Age	0.00477***	0.0411***	94.13***	-36.34**
	(0.000159)	(0.000520)	(0.655)	(14.17)
Age Squared	-4.06e-05***	-0.000366***	-1.016***	0.212
	(1.87e-06)	(5.93e-06)	(0.00747)	(0.141)
Number of own children residing in home	0.0118***	0.0381***	33.35***	624.7***
	(0.000795)	(0.00235)	(3.113)	(84.99)
Number of own children squared	-0.00236***	-0.00734***	-10.57***	-11.05
	(0.000189)	(0.000608)	(0.808)	(17.79)
Number of own children under the Age of 5	0.00325***	0.0386***	57.61***	1021***
	(0.000932)	(0.00262)	(3.505)	(93.93)
Hispanic	-0.00565	-0.00961	-39.33**	-109.1
	(0.00376)	(0.0130)	(17.18)	(381.4)
Whites of Hispanic Origin	0.00435	-0.0940***	4.308	-645.1
	(0.00361)	(0.0134)	(17.65)	(403.0)
Black	-0.0528***	-0.0730***	-160.7***	2623***
	(0.00193)	(0.00405)	(5.279)	(138.6)
American Indian or Alaskan Native	-0.0347***	-0.0473***	-71.57***	1572***
	(0.00702)	(0.0154)	(20.56)	(526.9)
Chinese	-0.0150**	-0.131***	-152.5***	949.8
	(0.00612)	(0.0133)	(17.52)	(658.6)
Japanese	-0.00900	-0.0533	-23.96	-1950
	(0.0160)	(0.0367)	(49.58)	(2069)
Other Asian or Pacific Islander	-0.00892***	-0.113***	-102.2***	132.3
	(0.00280)	(0.00686)	(9.061)	(326.5)
Other race, nec	-0.00394***	0.00866**	8.329	263.2
	(0.00145)	(0.00437)	(5.825)	(170.8)
Two major Races	-0.0244***	-0.0725***	-62.22***	1879***
	(0.00463)	(0.0110)	(14.65)	(372.8)
Three or more major Races	-0.0301	-0.00221	-148.4**	3900***
	(0.0213)	(0.0481)	(64.20)	(1306)
Education Unknown	0.00966**	0.180***	-22.22	-1431**
	(0.00383)	(0.0167)	(22.88)	(560.6)

High School Diploma	0.0175***	0.110***	162.3***	-1177***
	(0.000964)	(0.00401)	(5.058)	(122.3)
Some College Hours	0.0293***	0.178***	202.8***	-1960***
	(0.000906)	(0.00429)	(5.228)	(139.4)
Associate's Degree	0.0320***	0.220***	239.2***	-2752***
	(0.000920)	(0.00565)	(6.963)	(235.2)
Bachelor's Degree	0.0419***	0.404***	287.7***	-4417***
	(0.000830)	(0.00493)	(5.537)	(206.4)
Master's Degree	0.0388***	0.526***	282.0***	-5208***
	(0.000820)	(0.00621)	(7.114)	(353.3)
Professional Degree	0.0385***	0.515***	467.4***	-4802***
	(0.00112)	(0.0129)	(11.21)	(635.7)
Doctorate Degree	0.0375***	0.666***	364.5***	-4622***
	(0.00151)	(0.0125)	(14.58)	(867.4)
Constant		1.637***	-67.66***	-18295***
		(0.0216)	(14.19)	(443.6)
Location Fixed Effects?	yes	yes	yes	yes
Occupation and Industry Fixed Effects?	no	yes	no	no
Observations	306097	270251	289675	481770
R-squared		0.445		

Integrated Public Use Microdata Series and authors' calculations

$$
\text { Standard errors in parentheses } \quad * * * \mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05,{ }^{*} \mathrm{p}<0.1
$$

Table E.12: Crime Related Costs

	Victim Costs per Crime (1)	Property loss per crime (2)	Incarceration cost per crime (3)	Total Cost per crime (4)	Estimated change in (5) arrests (6)		Estimated change in (7) crimes (8)		(9) Social Benefit (10)	
Violent Crimes					Lower Bound	Upper Bound	Lower Bound	Upper Bound	Lower Bound	Upper Bound
Murder	\$4,327,782	\$177	\$82,259	\$4,409,899	-10	-17	-10	-17	\$44,098,990	\$74,968,283
Rape	\$128,067	\$147	\$2,241	\$130,190	30	51	135	229	\$17,575,650	\$29,813,510
Robbery	\$11,776	\$1,104	\$1,933	\$12,826	14	24	96	164	\$1,231,296	\$2,103,464
Assault	\$13,837	\$38	\$124	\$13,930	-536	-910	-2,551	-4,331	\$35,535,430	\$60,330,830
Property Crimes										
Burglary	\$2,061	\$1,428	\$354	\$1,273	-183	-320	-2,654	-4,640	\$3,378,542	\$5,906,720
Larceny/theft	\$545	\$397	\$43	\$270	-590	-994	-10,443	-17,594	\$2,819,610	\$4,750,380
Motor vehicle theft	\$5,447	\$4,858	\$180	\$1,741	-394	-676	-4,137	-7,098	\$7,202,517	\$12,157,403
Total					1,669	2,842	19,564	33,287	\$74,228,143	\$126,396,857

APPENDIX F - Program Assessment

Appendix F. 1
 Recommendations for CIS Programs

1. Encourage affiliates to address multiple risk factors where possible. Research was clear that the risk for dropping out increased with multiple risk factors that may snowball in effect over time. Programs should take this into account and target as many as possible.
2. Discourage partial implementation of model programs or the mixing of strategies drawn from different quality programs. When local Affiliates want to adopt an existing model program, CIS should encourage them to implement all elements of a program and implement them as designed.
3. Encourage the development of local strategies based on proven practices. If Affiliates develop their own strategies, encourage them to use strategies proven to impact the risk factors they are addressing and develop strategies based on best practices. Consider requiring documentation in annual reports to address these concerns.
4. Encourage the development of evidence-based strategies to evaluate programs to assure effectiveness and include documentation of results in annual report. Program evaluation is always an important part of program implementation, whether the program is an adopted model program or a locally developed one. Evaluation is particularly crucial for Affiliates developing their own strategies to make sure that the most effective strategies were selected and that they effectively addressed identified risk factors.
5. Develop a uniform reporting system for local Affiliates that include risk factors, strategies, and program outcome results. To best assess nationwide CIS efforts, local Affiliates should be required to report on a uniform set of elements that can be analyzed across programs.
6. Periodically update the risk factor, program, and strategy lists to keep up-to-date with current research. Research in the area of dropouts is ongoing and could receive renewed interest, given the recent publications on school dropouts from Education Week (Diplomas count, June 26, 2006) and the Gates Foundation-funded study, The Silent epidemic: Perspectives of high school dropout. Updates to the lists can assure that local Affiliates have the best available information.
7. Consider disseminating this helpful resource on selection and implementation of quality, evidence-based programs and strategies: the Coalition for Evidence-Based Policy's document, Identifying and implementing educational practices supported by rigorous evidence: A user friendly guide published by the U.S. Department of Education in 2003, which discusses this and other issues related to selecting and implementing evidence-based practices.

Appendix F. 2
 National Dropout Prevention Center/Network's Effective Strategies for Dropout Prevention

The NDPC/N has identified 15 effective strategies that have the most positive impact on the dropout rate. These strategies have been implemented successfully at all education levels and environments throughout the nation.

School and Community Perspective

Systemic Renewal
School-Community Collaboration
Safe Learning Environments

Early Interventions

Family Engagement
Early Childhood Education
Early Literacy Development

Basic Core Strategies

Mentoring/Tutoring
Service-Learning
Alternative Schooling
After-School Opportunities

Making the Most of Instruction
Professional Development
Active Learning
Educational Technology
Individualized Instruction
Career and Technology Education (CTE)

Appendix F. 3
 TEA's Evidence Standards for Dropout Prevention

Screening Criteria	Evidence Criteria
Studies must be published in 1995 or later.	Highest rated studies are randomized controlled trials and regression discontinuity studies; quasi-experimental and single subject designs receive one downgrade; pre- post tests receive two downgrades.
Sandomized studies are downgraded if the K - 12 level.	random assignments were not truly random.
Studies must be conducted in the United States.	Studies are downgraded if authors do not show evidence of post-attrition equivalence at baseline.
Studies must be on interventions designed to prevent dropout, improve graduation, or address risk factors specifically to improve dropout or graduation rates.	Studies are downgraded if there is any disruption or contamination that could have caused observed differences between the groups.
Studies must involve at least 30 students.	
Studies must take place over at least a 2-year period.	
Studies must consist of an eligible research design (i.e. randomized controlled trial, quasi-experimental study, regression discontinuity design, single subject design, and single group pre-post test).	
Studies must address at least one relevant outcome.	
Studies must measure outcomes with a data source of sufficient quality to produce credible results.	

(Source: Porowski, A., Smink, J., et al. 2008. Best Practices in Dropout Prevention. Fairfax, VA: ICF International, National Dropout Prevention Center)

Appendix F. 4
 Best Practices in Dropout Prevention Coding

Stage 1: Preliminary Screening: Stop coding, if any of the Pass/Fail criteria are not met and highlight the fail reason in the Descriptive Answers column.	Criteria Met?	Descriptive Answers, Notes, Concerns, or Questions
Citation in APA Format		Full Citation:
1. Decision 1: Was the study published in 1995 or later?	Pass/Fail	
2. Decision 2: Is the study about school dropout prevention at the k-12 level?	Pass/Fail	
3. Decision 3: Is the study conducted in the United States?	Pass/Fail	
4. Is the study conducted in Texas?	Yes/No	
5. Name the intervention addressed by the study.		
6. Decision 4: Was the intervention designed to prevent dropout, improve graduation, or address risk factors specifically to improve dropout/graduation rates?	Pass/Fail	
7. Decision 5: Does the study involve at least 30 students (in each condition [i.e., treatment and comparison groups]).	Pass/Fail	
8. Decision 6: Did the study take place over at least a 2-year period?	Pass/Fail	
9. Decision 7: Is the study an eligible design: RCT; regression discontinuity; QED with statistical controls and/or a matched comparison group; single subject design study; or pre-post?	Pass/Fail	
10. Decision 8: Does the study address at least one relevant student outcome?	Pass/Fail	
10a. Dropout (retention and reentering)	Yes/No	
10b. Graduation (HS diploma or GED)	Yes/No	
11. Decision 9: Is at least one relevant outcome measured with a data source of sufficient quality to produce credible results?	Pass/Fail	
12. Decision 10: Study Design (choose either RCT; regression discontinuity; QED with statistical controls and/or a matched comparison group; single subject design study; or pre-post)	$\begin{gathered} \text { Downgrade-QED, } \\ \text { single subject, or } \\ \text { pre-post; No } \\ \text { Downgrade - RCT } \\ \text { or RD } \\ \hline \end{gathered}$	
13. Decision 11: If the study was an RCT, was the assignment truly random?	Downgrade - No; No Downgrade Yes or Not applicable	
14. If authors controlled for any variables in a		

multivariate analysis, place them here		
Complete Table 1: Attrition		
15. How many study participants are there?		
15a. Is there more than 30% attrition from the original sample for the analysis?	Yes/No	
15b. Is the difference between program and comparison group attrition more than or equal to 10% ?	Yes/No	
16. Decision 12: If there is significant overall attrition, did the authors present sufficient evidence of post-attrition equivalence?	Downgrade-No; No Downgrade-Yes or Not Applicable	
17. Describe any disruptions of the intervention or control condition, any contamination of the intervention group, or any contamination of the comparison group.		
18. Is the study free of obvious disruption that could have caused observed differences between the groups?	Downgrade - No; No Downgrade-Yes	
Complete Table 2: Results - including subgroup impacts		
19. Decision 13: Assign a Study Quality Rating: Enter Study design and number of downgrades	Design, \# of downgrades	
Stage 3: Study and Intervention Details (External Validity)		
20. What state(s) was this study conducted in?	Answer	
21. Was the study implemented as intended? (if no, describe)	Yes/No	
21a. Intended duration of intervention		
21b. Teacher training		
22. Was the intervention focused on dropout recovery, or both?	Answer	
23. Urbanicity:		
23a. Urban area/school	Yes/No	
23b. Suburban area/school	Yes/No	
23c. Rural area/school	Yes/No	
24. School Type:		
24a. High School	Yes/No	
24b. Middle School	Yes/No	
24c. Elementary School	Yes/No	
25. Race/Ethnicity of Sample (preferably post-attrition):		
25a. \% African-American	Enter \%	
25b. \% Hispanic/Latino	Enter \%	
25c. \% White	Enter \%	
25d. \% Other	Enter \%	
26. Percentage Economically Disadvantaged	Enter \%	
27. Percentage English Language Learners	Enter \%	
28. Percentage Special Needs	Enter \%	
29. TEA At-Risk Criteria		
29a. \% not advance from one grade level to next	Enter \%	

29b. \% did not maintain an average 70\% in two or more foundation subjects	Enter \%	
29c. \% unsatisfactory performance on academic assessment	Enter \%	
29d. \% pregnant/parenting	Enter \%	
29e. \% placed in alternative education program	Enter \%	
29f. \% expelled (preceding or current school year)	Enter \%	
29g. \% previous dropouts	Enter \%	
30. Other Important Subgroup Characteristics (e.g., prior academic achievement, attendance/truancy		

(Source: Porowski, A., Smink, J., et al. 2008. Best Practices in Dropout Prevention. Fairfax, VA:
ICF International, National Dropout Prevention Center)

Appendix F. 5

SUMMARY OF KEY EVALUATION FINDINGS

AREA	FINDING			
Overarching Finding(s)	Finding 1: The CIS of Texas State Office (TEA) provides significant management and technical support to local affiliates. This support is credited with the implementation of a statewide CIS program that is well managed and of high quality. Finding 2: The CIS model is being implemented with fidelity throughout all 28 CIS of Texas affiliates.			
Finding 3: CIS of Texas is engaging and serving children and youth				
identified as at risk of dropping out of school.		$	$	Finding 4: The amount and type of case-managed services students received
:---				
positively influence the likelihood of a student staying in school.				
Implementation				
Finding 5: Large caseloads and limited access to students during the school day restrict the capacity of CIS campus managers to deliver effectively large doses of services to CIS students.				
Delivery				
Finding 6: Through both direct and brokered services, CIS provides the necessary services to address risk factors for school dropout. Finding 7: CIS students who had a mentor reported more positive outcomes relative to CIS students who did not.				

	Finding 8: General supportive guidance (i.e., having an "adult advocate"-- the core of the CIS model) is positively linked to several outcomes (e.g., stay in school). Impact Finding 9: Providing enrichment services resulted in a number of positive benefits to CIS students ${ }^{1}$. Finding 10: CIS has been successful in engaging parents, which is a necessary ingredient to a child's success. Finding 11: LEP (Limited English Proficient) and at-risk students (i.e., those identified by TEA at-risk categories) demonstrate increased occurrence of dropping out of school, reduced graduation rates and poorer performance in academics compared to other CIS case-managed students. Finding 12: Transitions from one school level to the next are a special challenge for CIS case-managed students. It took longer for these CIS students to get back on track during a transition from elementary to middle school and from middle school to high school. Finding 13: CIS is helping case-managed students stay on track with their classmates. Finding 14: Parents of CIS students report positive changes in their child as a result of participation in CIS activities. Finding 15: Students participating in CIS report that CIS provides needed support for success

Source: "Evaluation of Communities In Schools (CIS) of Texas"

[^2]
[^0]: ${ }^{1}$ The ttest results comparing 2000 to 20007 statewide dropout data reported 4.3378 , considerably higher than the 1.96 benchmark needed to achieve statistical significance.
 ${ }^{2}$ The ttest results comparing 2000 to 2005 statewide dropout data reported 17.4907, considerably higher than the 1.96 benchmark needed to achieve statistically significance.
 ${ }^{3}$ The ttest results comparing 2005 to 2007 statewide dropout data reported -13.1191 which, when taken in as an absolute value, is considerably more than the 1.96 benchmark needed to achieve statistical significance.

[^1]: ${ }^{4}$ The ttest results comparing 2005 to 2006 statewide dropout data reported -9.0389 which, when taken in as an absolute value, is, considerably more than the 1.96 benchmark needed to achieve statistical significance
 ${ }^{5}$ The ttest results comparing 2006 to 2007 statewide dropout data reported -10.6152 which, when taken in as an absolute value, is, considerably more than the 1.96 benchmark needed to achieve statistical significance.
 ${ }^{6}$ The ttest results comparing 2000 to 2005 statewide dropout data reported 6.3945 , considerably higher than the 1.96 benchmark needed to achieve statistically significance. 6.3945

[^2]: ${ }^{1}$ Enrichment services include: supportive guidance and counseling services, health and human services, facilitating parental and family involvement, career and employment awareness, enrichment activities, and education enhancement and support.

